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Motivation

Figure 1: Dados apontam ... (data shows ...)




Basic concepts of probability:

Sample space Q2

It's the set of all the possible outcomes of a experiment, denoted by
SorQ

Event

It's a subset of the sample space.




Basic concepts of probability:

Probability (Definition):

Given a experiment with a sample space € and a class of events A,
the probability denoted by IP is a function which has A as domain
and associate a numerical value between [0, 1] as image.

Probability properties:
Q@ P(Q)=1and P(P) =0
@ 0 <P(A) <1, for every event A
© For any sequence of mutually exclusive events Aj, Ay, ... that's
events that A; ﬂAj when i # j we have that:

P (G A,-) _y P(A))
i=1 i=1




Basic concepts of probability:

Event independence:

Two events are independent when the occurrence of the first does
not affect the probability of ocurrence of the second.

Two events A and B are independent if:

P(A()B) = P(A)P(B)

Conditional Events:
The probability of a event A to occur given that the event B
occurred is:

P(AN B)
P(B)

P(A|B) =




Basic concepts of probability:

Bayes theorem:
P(A|B) = w
General case:
o P(B|A;)P(A;)
P(A;|B) 71 P(B|A)P(A;)




Bayes example (from Veritasium):

You are felling sick, so you go to the doctor, there you run a battery
of tests. After getting the results you tested positive for a rare
disease (affects 0.1% of the population), the test will correctly
identify that you have it 99% of the times.

What's the chances that you actually have the disease? 99%?



https://www.youtube.com/watch?v=R13BD8qKeTg

Bayes example Solution

Let's denote the event of you have the disease H (stands for
hypothesis, the prior) and the test been positive denoted by E
(stands for evidence), so we have: P(H) = 0.001 and

P(E|H) = 0.99

P(E|H)P(H) P(E|H)P(H)

P(H|E) = P(E)  P(H)P(E|H) + P(HO)P(E|HS) ~

_ 0.99 - 0.001
~0.001-0.99 + 0.999 - 0.01

What if you test again and it's also positive? You can just take the
posterior probability we just calculated and use as a prior:

= 0.09 = 9%

_ 0.99 - 0.09
~0.09-0.99 +0.91-0.01

@ Awesome video: A visual guide to Bayesian thinking

=0.907 =~ 91%



https://www.youtube.com/watch?v=BrK7X_XlGB8
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Figure 2: Credits: sandserifcomics
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Random Variable (RV)

Consider a experiment with a sample space Q2 associated with it. A

function that maps each element w € € to a Real number such that

[w < X] it's called random variable (RV) (X : Q — R)

@ Example: Imagine a experiment that consist of 3 consecutive

fair coin tosses, so the sample space of this experiment is:
S ={(HHH), (HHT),... (T,T,T)} . Now we want to
create a random variable X that counts the number of heads in
each outcome, so X((H,H,H)) = 3 and X((H,H,T)) = 2.




Random Variable:

Probability Mass Function (PMF):

fx(x) =P[X =x] =P[{w € Q: X(w) = x}]

Probability Density Function (PDF)

Pla< X < b] = /b Al

Cumulative Distribution Function (CDF)

Fx(x) =P[X < x]




Expectation:
@ Discrete : E[X] = ZX]P(X = X)
e Continuous: E[X] :/ xf(x)dx

Variance:

V[X] = 0% = E[X?] - E?[X]
Sample mean:

X, =

1 n
=N X
n 4

i=1
Sample variance and standard deviation:
n
5 1

s = n—lZ(Xi_yy

i=1

Standard deviation = s



Discrete distributions

Bernoulli:

Consider a experiment with has two possible outcomes: success
(X=1, with probability p) or failure (X=0), this random variable is
called Bernoulli, the PMF is:

P(X = k) = p*(1 — p)*

Binomial:

Now consider a Bernoulli experiment conducted n times, let X be
the random variable that represents the number of successes, X is
called Binomial, the PMF is:

P(X = k) = @pk(l —p)"k




Discrete distributions

Geometric:

Again consider a Bernoulli experiment conducted n times, but the
first n-1 are failures and the last nth is a success. Let X be number
of tries , which is called Geometric, the PMF is:

B(X = k) = (1 - p)*p

@ A important property is that Geometric distribution is the only
discrete distribution that is memoryless.

Poisson:

A random variable which value can assume 0,1,2 ... is called
Poisson with A > 0 parameter if your PMF is:
e—)\)\k

k!




Discrete distributions plots
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Discrete distributions plots

Binomial:
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Discrete distributions plots

Poisson:
Poisson
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Continuous distributions

Normal (or Gaussian, bell curve):

A continuous real random variable is called Normal with 62 > 0
(squared scale), i € R (location) parameters if your PDF is:

f(x) = 0127rexp (—; (X ; M)2>

@ The normal function is a example of Liouville's theorem, an
probability cannot be analytically calculated, only be numeric
methods.

@ Fun facts: the half inside the exponential is for the variance to

be 1, and the /27 is for the integral in the whole support to
become 1.




Continuous distributions

Exponential

A continuous positive random variable is called Exponential with
A > 0 (rate or inverse scale) parameter if your PDF is:

f(x) = e ™

Important property: Exponential and Geometric (discrete)
distribution are the only distributions that are memoryless.

Memoryless property:
PIX>x+y|X>y]=P[X > x]

So no matter how much time has passed it's like the process is
starting from beginning.




Continuous distributions

Pareto

A continuous x € [xm, 00) random variable is called pareto with
Xm > 0 (scale) and « > 0 (shape) parameters if your PDF is:
ax,

f(x)= m

T oyxatl

Zipf is the discrete distribution of pareto
Pareto is a heavy tailed distribution: It means it goes to zero
slower (than exponential).

Pareto principle (80-20 law):

The pareto principle states that 80% of results is caused by 20% of
the effects, for example wealth distribution, software bugs etc ...
It's a particular pareto distributed values when o &~ 1.161




Continuous distributions plots

Normal:
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Continuous distributions plots

Exponential:
Exponential




Continuous distributions plots

Pareto:
Pareto




Calculations on the Normal distribution

Given a Normal distributed values, how to calculate the probability
on it?
With normal distribution we usually use a standard normal (where
1= 0,0 = 1) cumulative table and standardize the values.
o How to standardize the values: Given X ~ N(u,0?)
X — [ X—X

or z=
g S

ZzZ =

z is called z score and is standard normal distributed.
e Standard cumulative ®(x):
d(x) =P(z < x) also $(—x) =1 — d(x)
®(x) values can we found in a table or using NORMSDIST function
in Excel or in Python using stats.norm.cdf function from SciPy.



https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative

68-95-99.7 rule:
The 68-95-99.7 rule also know as the empirical rule is a shorthand
to remember the percentage of Normal distributed values that lie
within arround the mean with a width of 1,2,3 standard deviations.
P(p—1lo < X < p+1lo) = 0.6827
P(u—20 < X < pu+ 20) ~ 0.9545
P(u— 30 < X < u+30) ~ 0.9973

We don't have to memorize this values, we can calculate it:

Plu—lo<X<pu+lo)=P(-lo < X—-—p<lo)=

®(1)—d(—1) ~ 0.6827
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68-95-99.7 rule: Chart
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Figure 3: Credits: Wikipedia: Empirical rule histogram



https://commons.wikimedia.org/wiki/File:Empirical_rule_histogram.svg

Calculations on the Normal distribution: Example from Ross:

X is a normal random variable with parameters: ;= 3 and 02 = 9,
Calculate: (a) P(2 < X < 5) (b) P(X > 0) (c) P(|X — 3| > 6)

normal distribution p=3,0=3

554321012 34506 760910111
X




Calculations on the Normal distribution: Example from Ross: part a

normal distribution u=3,¢=3
2 <x =<5 filled

£-5-4-3-2-1012 3 45678 9101112
x

2 — X — 5— -1 2
IP(2<X<5):IP< . g “>:]P>(<Z< =
o o o 3 3

o(2)-0(3)-5()-[-o(3)] -0




Calculations on the Normal distribution: Example from Ross: part b

normal distribution p=3,0=3
x>0 filled

-6-5-4-3-2-10 12 3 456 7 8 9101112
x

P(X>0):IP<X_“>_“):P(Z>—1):1—q>(_1):

g g

— ®(1) ~ 0.8413




Calculations on the Normal distribution: Example from Ross: part ¢

normal distribution p=3,0=3
[-3] > 6 filled

-6-5-4-3-2-1012 3456768 9101112
x

P(X—-3>6)=P6<X—-3<-6)=P9<X<-3)=

X—p 9- X—p —3-
}P’(X>9)+IP’(X<—3):IP’< £ “)H}D( "

o (o g

=P(Z >2) +P(Z < —2) = 2[1 — (2)] ~ 0.0456




Assumptions on distribution choice
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Figure 4: Credits: Portal data science
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Assumptions on distribution choice
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Assumptions on distribution choice

In order to know which distribution of your data values
understanding the nature of the problem is fundamental.

Is your values a result from counting? So is it discrete ? Or
continuous? Which values are possible?

Discrete distributions:

@ Bernoulli: boolean result, example: coin toss, second turn
(with only 2 candidates) election.

@ Binomial: Number of “success” results given a permanent
experiment runs. Example: From 20 devices after a long time
what's the probability of 15 of them has a kind of defect.

@ Geometric: Number of failures until the first success. Example:
The probability of winning the lottery is 1 in 1 million, What's
the probability of winning it after 3 tries?

@ Poisson: Example: Number of cars on the road.




Assumptions on distribution choice

Continuous distributions:

@ Normal: No restriction on possible values (positive and
negative values are valid). Example: The height of children of
the same sex and age.

@ chi-squared: Only positive values, unlike normal is not
symmetric.

@ Exponential: Only positive values, describes the time until
failure.

@ Pareto: Only positive values and bigger and x,,. Example: Size
of gold mines, very few big mines and a lot of small ones.




order statistics and quantiles

e Given Xi, Xy, -+, X, values from the same distribution, let:
X(1) the smallest value from Xi, Xp,- -+, X, (minimum)
X(2) 2th smallest value from X, Xo,- -+, Xj

X(jy jth smallest value from Xq, Xa,---, X,
X(n) the biggest value from X1, X3, - -+, X, (maximum)

@ g-quantiles are values that partition the values into q subsets of
(almost) equal sizes. For instance: q=2 we have the median, 4
the quartiles , 100 percentile and so on . ..

@ Why use quantiles? Why use median instead of the mean?
Because Order statistics is a robust statistic which means it is
not affected by outliers.




boxplots:
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Figure 5: Credits: Wikipedia: Boxplot vs PDF



https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg

Boxplots example:

Let X_n be a sequence of normal distributed random variable with
# =500 and ¢ = 100 we have n=1000 samples, results:
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Boxplots example:

O-I |u¢ L]

200 300 400 500 600 700 800 900

count 1000.000000

mean 501.933206
std 97.921594
min 175.873266
25% 435.240969
50% 502.530061
75% 564.794388

max 885.273149




Convergence

In statistics there some types of convergence, the main ones are:
Let {X1, Xz, ---} be a sequence of identically distributed random

variables.
© In Probability: X, LIS
(Ve > 0) nli_)rrgOIP’(|X,, -Y|>e)=0
@ In distribution (weakly, in law): X, Dy
Tim_Fx,(x) = Fy(y)

© Almost sure (strongly) : X, == Y

P(Iim X,,:Y):l

n—o0




Convergence

Law of large numbers (LLN):

Let {Xi, X2, -} be a sequence of identically distributed random
variables and E[X] =

Weak (WLLN)

X, 2 u n— oo

Strong (SLLN)

X, = pu n— oo
In words: The sample mean converge to the (theoretical) expected
value as the sample size increases.




Convergence

Central Limit Theorem (CLT)

Let {Xi, X2, -} be a sequence of identically distributed random
variables and E[X] = u and V[X] = 02
The CLT states that:

2
Xniﬂ\/(u,:)

After some transformations we have:




Inference:

Inference is the process to deduce (estimate) the properties of
underlying probability distribution from the data values.

Maximum likelihood estimator (MLE):

One of the most popular estimator method is the maximum
likelihood estimator, it consists of finding the parameters that
maximizes the likelihood function (via derivatives).

Q-Q plot:

Q-Q (quantile-quantile) plot: Is a plot where data quantiles are
ploted in one axis and the theoretical quantiles of the fitted
distribution on the other axis and a linear regression of the points.
This plot can be used to provide a assessment of the “goodness of
fit" and maybe find out the data outliers on the data.




Inference process

Given some data the inference process goes like this:
@ Choose a distribution (based on the nature of the problem).
@ Fit the distribution (estimate the parameters).
© Create a g-q plot to judge the goodness of fit, if some outliers
are found they can be identified (and maybe left out).
If the line still not good try starting again with a different
distribution.




Inference example:

Using the same data from the boxplot example, the Q-Q plot:

Probability Plot

900

800

d

rder

-3 -2 -1 0 1 2 3
Theoretical quantiles

The plot has created using stats.probplot from SciPy.

Using stats.norm.fit we can estimate (fit) the parameters (assuming
normal distribution), we get: loc=501.93 and scale=97.87 we
generated random values using loc=500,scale=100n=1000 (the fit
could get better with a bigger sample)



https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html

Inference example 2:
With new data (n=1000), the Q-Q plot:

Probability Plot

Ordered Values
—
Ln
[=]
(=]

-3 -2 ) 0 1 2 3
Theoretical guantiles

Looking at the line we can clearly see that the line did not fit the
points, the data probably is not normal distributed.




Inference example 2: histogram:

120

100

20

500 1000 1500 2000 2500 3000

the values is not symmetric, one good guest is that it's a chi
squared distribution.




Inference example 2: Q-Q plot assuming chi squared:

Probability Plot

Ordered Values

500 750 1000 1250 1500 1750 2000
Theoretical guantiles

Using stats.chi2.fit we can estimate (fit) the parameters:
df=5.5,loc=460,scale=74, we generated random values using
df=4,loc=500,scale=100.




Further reading:

To study those topics in depth, here are some awesome references:

Getting started:

@ Podcast: (pt) Pizza de Dados

@ Book: The Lady Tasting Tea: (pt) Uma Senhora Toma Cha.
@ /r/dataisbeautiful

@ Scipy lectures scientific examples with Python.

Studying material:

@ (pt) Portal Action

@ The Probability and Statistics Cookbook

@ Havard Statistics 110: Probability

@ Statistics and probability

@ Random website

@ Book: (en) First Course in Probability by Sheldon Ross: (pt)
Probabilidade: Um Curso Moderno com Aplicacées



https://pizzadedados.com/
https://www.reddit.com/r/dataisbeautiful/
http://scipy-lectures.org/
http://www.portalaction.com.br/ambiente-virtual-de-aprendizado
http://statistics.zone/
https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
https://www.khanacademy.org/math/statistics-probability
http://www.randomservices.org/random/

