Introduction to statistics

 Learning the basics of probability and statistics

 Learning the basics of probability and statistics}

Caio Volpato (caioau)
caioau.keybase.pub \rightarrow caioauheyuuiavlc.onion
210B C5A4 14FD 9274 6B6A 250E EFF5 B2E1 80F2 94CE All Copylefts are beautiful: licensed under CC BY-SA 4.0

Summary:

- Probability concepts
- Discrete distributions.
- Continuous distributions.
- Calculations on the Normal distribution.
- Convergence
- Inference

Motivation

Figure 1: Dados apontam ... (data shows ...)

Basic concepts of probability:

Sample space Ω

It's the set of all the possible outcomes of a experiment, denoted by S or Ω

Event

It's a subset of the sample space.

Basic concepts of probability:

Probability (Definition):

Given a experiment with a sample space Ω and a class of events \mathcal{A}, the probability denoted by \mathbb{P} is a function which has \mathcal{A} as domain and associate a numerical value between $[0,1]$ as image.

Probability properties:

(1) $\mathbb{P}(\Omega)=1$ and $\mathbb{P}(\emptyset)=0$
(2) $0 \leq \mathbb{P}(A) \leq 1$, for every event A
(3) For any sequence of mutually exclusive events A_{1}, A_{2}, \ldots that's events that $A_{i} \bigcap A_{j}$ when $i \neq j$ we have that:

$$
\mathbb{P}\left(\bigcup_{i=1}^{\infty} A_{i}\right)=\sum_{i=1}^{\infty} \mathbb{P}\left(A_{i}\right)
$$

Basic concepts of probability:

Event independence:

Two events are independent when the occurrence of the first does not affect the probability of ocurrence of the second.
Two events A and B are independent if:

$$
\mathbb{P}(A \bigcap B)=\mathbb{P}(A) \mathbb{P}(B)
$$

Conditional Events:

The probability of a event A to occur given that the event B occurred is:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(A \bigcap B)}{\mathbb{P}(B)}
$$

Basic concepts of probability:

Bayes theorem:

$$
\mathbb{P}(A \mid B)=\frac{\mathbb{P}(B \mid A) \mathbb{P}(A)}{\mathbb{P}(B)}
$$

General case:

$$
\mathbb{P}\left(A_{i} \mid B\right)=\frac{\mathbb{P}\left(B \mid A_{i}\right) \mathbb{P}\left(A_{i}\right)}{\sum_{j=1}^{n} \mathbb{P}\left(B \mid A_{j}\right) \mathbb{P}\left(A_{j}\right)}
$$

Bayes example (from Veritasium):

You are felling sick, so you go to the doctor, there you run a battery of tests. After getting the results you tested positive for a rare disease (affects 0.1% of the population), the test will correctly identify that you have it 99% of the times.
What's the chances that you actually have the disease? 99\%?

Bayes example Solution

Let's denote the event of you have the disease H (stands for hypothesis, the prior) and the test been positive denoted by E (stands for evidence), so we have: $\mathbb{P}(H)=0.001$ and $\mathbb{P}(E \mid H)=0.99$

$$
\begin{aligned}
\mathbb{P}(H \mid E)= & \frac{\mathbb{P}(E \mid H) \mathbb{P}(H)}{\mathbb{P}(E)}=\frac{\mathbb{P}(E \mid H) \mathbb{P}(H)}{\mathbb{P}(H) \mathbb{P}(E \mid H)+\mathbb{P}\left(H^{C}\right) \mathbb{P}\left(E \mid H^{C}\right)}= \\
& =\frac{0.99 \cdot 0.001}{0.001 \cdot 0.99+0.999 \cdot 0.01}=0.09=9 \%
\end{aligned}
$$

What if you test again and it's also positive? You can just take the posterior probability we just calculated and use as a prior:

$$
=\frac{0.99 \cdot 0.09}{0.09 \cdot 0.99+0.91 \cdot 0.01}=0.907 \approx 91 \%
$$

- Awesome video: A visual guide to Bayesian thinking

Figure 2: Credits: sandserifcomics

Random Variable (RV)

Consider a experiment with a sample space Ω associated with it. A function that maps each element $\omega \in \Omega$ to a Real number such that [$w \leq X$] it's called random variable (RV) $(X: \Omega \rightarrow \mathbb{R})$

- Example: Imagine a experiment that consist of 3 consecutive fair coin tosses, so the sample space of this experiment is: $S=\{(H, H, H),(H, H, T), \ldots(T, T, T)\}$. Now we want to create a random variable X that counts the number of heads in each outcome, so $X((H, H, H))=3$ and $X((H, H, T))=2$.

Random Variable:

Probability Mass Function (PMF):

$$
f_{X}(x)=\mathbb{P}[X=x]=\mathbb{P}[\{\omega \in \Omega: X(\omega)=x\}]
$$

Probability Density Function (PDF)

$$
\mathbb{P}[a \leq X \leq b]=\int_{a}^{b} f(x) d x
$$

Cumulative Distribution Function (CDF)

$$
F_{X}(x)=\mathbb{P}[X \leq x]
$$

Expectation:

- Discrete : $\mathbb{E}[X]=\sum x \mathbb{P}(X=x)$
- Continuous: $\mathbb{E}[X]=\int_{-\infty}^{\infty} x f(x) d x$

Variance:

$$
\mathbb{V}[X]=\sigma_{X}^{2}=\mathbb{E}\left[X^{2}\right]-\mathbb{E}^{2}[X]
$$

Sample mean:

$$
\overline{X_{n}}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

Sample variance and standard deviation:

$$
s^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Standard deviation $=\mathrm{s}$

Discrete distributions

Bernoulli:

Consider a experiment with has two possible outcomes: success ($X=1$, with probability p) or failure $(X=0)$, this random variable is called Bernoulli, the PMF is:

$$
\mathbb{P}(X=k)=p^{k}(1-p)^{1-k}
$$

Binomial:

Now consider a Bernoulli experiment conducted n times, let X be the random variable that represents the number of successes, X is called Binomial, the PMF is:

$$
\mathbb{P}(X=k)=\binom{n}{k} p^{k}(1-p)^{n-k}
$$

Discrete distributions

Geometric:

Again consider a Bernoulli experiment conducted n times, but the first $\mathrm{n}-1$ are failures and the last nth is a success. Let X be number of tries, which is called Geometric, the PMF is:

$$
\mathbb{P}(X=k)=(1-p)^{k} p
$$

- A important property is that Geometric distribution is the only discrete distribution that is memoryless.

Poisson:

A random variable which value can assume $0,1,2 \ldots$ is called Poisson with $\lambda>0$ parameter if your PMF is:

$$
\mathbb{P}(X=k)=\frac{e^{-\lambda} \lambda^{k}}{k!}
$$

Discrete distributions plots

Geometric:
Geometric

Discrete distributions plots

Binomial:

Discrete distributions plots

Poisson:
Poisson

Continuous distributions

Normal (or Gaussian, bell curve):
A continuous real random variable is called Normal with $\sigma^{2}>0$ (squared scale), $\mu \in \mathbb{R}$ (location) parameters if your PDF is:

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^{2}\right)
$$

- The normal function is a example of Liouville's theorem, an probability cannot be analytically calculated, only be numeric methods.
- Fun facts: the half inside the exponential is for the variance to be 1 , and the $\sqrt{2 \pi}$ is for the integral in the whole support to become 1 .

Continuous distributions

Exponential

A continuous positive random variable is called Exponential with $\lambda>0$ (rate or inverse scale) parameter if your PDF is:

$$
f(x)=\lambda e^{-\lambda x}
$$

Important property: Exponential and Geometric (discrete) distribution are the only distributions that are memoryless.

Memoryless property:

$$
\mathbb{P}[X>x+y \mid X>y]=\mathbb{P}[X>x]
$$

So no matter how much time has passed it's like the process is starting from beginning.

Continuous distributions

Pareto

A continuous $x \in\left[x_{m}, \infty\right)$ random variable is called pareto with $x_{m}>0$ (scale) and $\alpha>0$ (shape) parameters if your PDF is:

$$
f(x)=\frac{\alpha x_{m}^{\alpha}}{x^{\alpha+1}}
$$

Zipf is the discrete distribution of pareto Pareto is a heavy tailed distribution: It means it goes to zero slower (than exponential).

Pareto principle (80-20 law):

The pareto principle states that 80% of results is caused by 20% of the effects, for example wealth distribution, software bugs etc ... It's a particular pareto distributed values when $\alpha \approx 1.161$

Continuous distributions plots

Normal:
Normal

Continuous distributions plots

Exponential:

Exponential

Continuous distributions plots

Calculations on the Normal distribution

Given a Normal distributed values, how to calculate the probability on it?
With normal distribution we usually use a standard normal (where $\mu=0, \sigma=1$) cumulative table and standardize the values.

- How to standardize the values: Given $X \sim N\left(\mu, \sigma^{2}\right)$

$$
z=\frac{x-\mu}{\sigma} \quad \text { or } \quad z=\frac{x-\bar{x}}{s}
$$

z is called z score and is standard normal distributed.

- Standard cumulative $\Phi(x)$:
$\Phi(x)=\mathbb{P}(z \leq x)$ also $\Phi(-x)=1-\Phi(x)$
$\Phi(x)$ values can we found in a table or using NORMSDIST function in Excel or in Python using stats.norm.cdf function from SciPy.

68-95-99.7 rule:

The 68-95-99.7 rule also know as the empirical rule is a shorthand to remember the percentage of Normal distributed values that lie within arround the mean with a width of $1,2,3$ standard deviations.

$$
\begin{aligned}
& \mathbb{P}(\mu-1 \sigma \leq X \leq \mu+1 \sigma) \approx 0.6827 \\
& \mathbb{P}(\mu-2 \sigma \leq X \leq \mu+2 \sigma) \approx 0.9545 \\
& \mathbb{P}(\mu-3 \sigma \leq X \leq \mu+3 \sigma) \approx 0.9973
\end{aligned}
$$

We don't have to memorize this values, we can calculate it:

$$
\begin{gathered}
\mathbb{P}(\mu-1 \sigma \leq X \leq \mu+1 \sigma)=\mathbb{P}(-1 \sigma \leq X-\mu \leq 1 \sigma)= \\
\mathbb{P}\left(-1 \leq \frac{X-\mu}{\sigma} \leq 1\right)=\mathbb{P}(-1 \leq z \leq 1)=\Phi(1)-\Phi(-1) \approx 0.6827
\end{gathered}
$$

68-95-99.7 rule: Chart

99.7 $\approx 100 \%$

Figure 3: Credits: Wikipedia: Empirical rule histogram

Calculations on the Normal distribution: Example from Ross:
X is a normal random variable with parameters: $\mu=3$ and $\sigma^{2}=9$, Calculate: (a) $\mathbb{P}(2<X<5)$ (b) $\mathbb{P}(X>0)$ (c) $\mathbb{P}(|X-3|>6)$
normal distribution $\mu=3, \sigma=3$

Calculations on the Normal distribution: Example from Ross: part a

$$
\begin{gathered}
\mathbb{P}(2<X<5)=\mathbb{P}\left(\frac{2-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{5-\mu}{\sigma}\right)=\mathbb{P}\left(\frac{-1}{3}<Z<\frac{2}{3}\right)= \\
\Phi\left(\frac{2}{3}\right)-\Phi\left(\frac{-1}{3}\right)=\Phi\left(\frac{2}{3}\right)-\left[1-\Phi\left(\frac{1}{3}\right)\right] \approx 0.3779
\end{gathered}
$$

Calculations on the Normal distribution: Example from Ross: part b normal distribution $\mu=3, \sigma=3$

$$
\begin{aligned}
\mathbb{P}(X>0)=\mathbb{P}\left(\frac{X-\mu}{\sigma}\right. & \left.>\frac{-\mu}{\sigma}\right)=\mathbb{P}(Z>-1)=1-\Phi(-1)= \\
& =\Phi(1) \approx 0.8413
\end{aligned}
$$

Calculations on the Normal distribution: Example from Ross: part c

$$
\mathbb{P}(|X-3|>6)=\mathbb{P}(6<X-3<-6)=\mathbb{P}(9<X<-3)=
$$

$$
\begin{gathered}
\mathbb{P}(X>9)+\mathbb{P}(X<-3)=\mathbb{P}\left(\frac{X-\mu}{\sigma}>\frac{9-\mu}{\sigma}\right)+\mathbb{P}\left(\frac{X-\mu}{\sigma}<\frac{-3-\mu}{\sigma}\right) \\
=\mathbb{P}(Z>2)+\mathbb{P}(Z<-2)=2[1-\Phi(2)] \approx 0.0456
\end{gathered}
$$

Assumptions on distribution choice

Figure 4: Credits: Portal data science

Assumptions on distribution choice

Know Your Distrosaurs

Stesonormalus

Student's t Rex

Diraciosaurus

Assumptions on distribution choice

In order to know which distribution of your data values understanding the nature of the problem is fundamental. Is your values a result from counting? So is it discrete? Or continuous? Which values are possible?

Discrete distributions:

- Bernoulli: boolean result, example: coin toss, second turn (with only 2 candidates) election.
- Binomial: Number of "success" results given a permanent experiment runs. Example: From 20 devices after a long time what's the probability of 15 of them has a kind of defect.
- Geometric: Number of failures until the first success. Example: The probability of winning the lottery is 1 in 1 million, What's the probability of winning it after 3 tries?
- Poisson: Example: Number of cars on the road.

Assumptions on distribution choice

Continuous distributions:

- Normal: No restriction on possible values (positive and negative values are valid). Example: The height of children of the same sex and age.
- chi-squared: Only positive values, unlike normal is not symmetric.
- Exponential: Only positive values, describes the time until failure.
- Pareto: Only positive values and bigger and x_{m}. Example: Size of gold mines, very few big mines and a lot of small ones.

order statistics and quantiles

- Given $X_{1}, X_{2}, \cdots, X_{n}$ values from the same distribution, let:
$X_{(1)}$ the smallest value from $X_{1}, X_{2}, \cdots, X_{n}$ (minimum)
$X_{(2)}$ 2th smallest value from $X_{1}, X_{2}, \cdots, X_{n}$
$X_{(j)}$ jth smallest value from $X_{1}, X_{2}, \cdots, X_{n}$
$X_{(n)}$ the biggest value from $X_{1}, X_{2}, \cdots, X_{n}$ (maximum)
- q-quantiles are values that partition the values into q subsets of (almost) equal sizes. For instance: $\mathrm{q}=2$ we have the median, 4 the quartiles, 100 percentile and so on ...
- Why use quantiles? Why use median instead of the mean? Because Order statistics is a robust statistic which means it is not affected by outliers.
boxplots:

Figure 5: Credits: Wikipedia: Boxplot vs PDF

Boxplots example:

Let $X _n$ be a sequence of normal distributed random variable with $\mu=500$ and $\sigma=100$ we have $\mathrm{n}=1000$ samples, results:

Boxplots example:

count	1000.000000
mean	501.933206
std	97.921594
min	175.873266
25%	435.240969
50%	502.530061
75%	564.794388
\max	885.273149

Convergence

In statistics there some types of convergence, the main ones are: Let $\left\{X_{1}, X_{2}, \cdots\right\}$ be a sequence of identically distributed random variables.
(1) In Probability: $X_{n} \xrightarrow{p} Y$:

$$
(\forall \varepsilon>0) \quad \lim _{n \rightarrow \infty} \mathbb{P}\left(\left|X_{n}-Y\right|>\varepsilon\right)=0
$$

(2) In distribution (weakly, in law): $X_{n} \xrightarrow{D} Y$

$$
\lim _{n \rightarrow \infty} F_{X_{n}}(x)=F_{Y}(y)
$$

(3) Almost sure (strongly) : $X_{n} \xrightarrow{\text { as }} Y$

$$
\mathbb{P}\left(\lim _{n \rightarrow \infty} X_{n}=Y\right)=1
$$

Convergence

Law of large numbers (LLN):
Let $\left\{X_{1}, X_{2}, \cdots\right\}$ be a sequence of identically distributed random variables and $\mathbb{E}[X]=\mu$

Weak (WLLN)
$\overline{X_{n}} \xrightarrow{p} \mu \quad n \rightarrow \infty$
Strong (SLLN)
$\overline{X_{n}} \xrightarrow{\text { as }} \mu \quad n \rightarrow \infty$
In words: The sample mean converge to the (theoretical) expected value as the sample size increases.

Convergence

Central Limit Theorem (CLT)

Let $\left\{X_{1}, X_{2}, \cdots\right\}$ be a sequence of identically distributed random variables and $\mathbb{E}[X]=\mu$ and $\mathbb{V}[X]=\sigma^{2}$
The CLT states that:

$$
\overline{X_{n}} \xrightarrow{D} \mathcal{N}\left(\mu, \frac{\sigma^{2}}{n}\right)
$$

After some transformations we have:

$$
\frac{\sqrt{n}\left(\overline{X_{n}}-\mu\right)}{\sigma} \xrightarrow{D} \mathcal{N}(0,1)
$$

Inference:

Inference is the process to deduce (estimate) the properties of underlying probability distribution from the data values.

Maximum likelihood estimator (MLE):

One of the most popular estimator method is the maximum likelihood estimator, it consists of finding the parameters that maximizes the likelihood function (via derivatives).

Q-Q plot:
Q-Q (quantile-quantile) plot: Is a plot where data quantiles are ploted in one axis and the theoretical quantiles of the fitted distribution on the other axis and a linear regression of the points. This plot can be used to provide a assessment of the "goodness of fit" and maybe find out the data outliers on the data.

Inference process

Given some data the inference process goes like this:
(1) Choose a distribution (based on the nature of the problem).
(2) Fit the distribution (estimate the parameters).
(3) Create a q-q plot to judge the goodness of fit, if some outliers are found they can be identified (and maybe left out).
If the line still not good try starting again with a different distribution.

Inference example:

Using the same data from the boxplot example, the Q-Q plot:

The plot has created using stats.probplot from SciPy. Using stats.norm.fit we can estimate (fit) the parameters (assuming normal distribution), we get: loc=501.93 and scale $=97.87$ we generated random values using $l o c=500$,scale $=100 n=1000$ (the fit could get better with a bigger sample)

Inference example 2:

With new data ($\mathrm{n}=1000$), the Q-Q plot:
Probability Plot

Looking at the line we can clearly see that the line did not fit the points, the data probably is not normal distributed.

Inference example 2: histogram:

the values is not symmetric, one good guest is that it's a chi squared distribution.

Inference example 2: Q-Q plot assuming chi squared:

Using stats.chi2.fit we can estimate (fit) the parameters: $d f=5.5, l o c=460$, scale $=74$, we generated random values using $d f=4, l o c=500$, scale $=100$.

Further reading:

To study those topics in depth, here are some awesome references:
Getting started:

- Podcast: (pt) Pizza de Dados
- Book: The Lady Tasting Tea: (pt) Uma Senhora Toma Chá.
- /r/dataisbeautiful
- Scipy lectures scientific examples with Python.

Studying material:

- (pt) Portal Action
- The Probability and Statistics Cookbook
- Havard Statistics 110: Probability
- Statistics and probability
- Random website
- Book: (en) First Course in Probability by Sheldon Ross: (pt) Probabilidade: Um Curso Moderno com Aplicações

