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Motivation

Figure 1: Dados apontam . . . (data shows . . . )



Basic concepts of probability:

Sample space Ω
It’s the set of all the possible outcomes of a experiment, denoted by
S or Ω

Event
It’s a subset of the sample space.



Basic concepts of probability:

Probability (Definition):
Given a experiment with a sample space Ω and a class of events A,
the probability denoted by P is a function which has A as domain
and associate a numerical value between [0, 1] as image.

Probability properties:
1 P(Ω) = 1 and P(∅) = 0
2 0 ≤ P(A) ≤ 1, for every event A
3 For any sequence of mutually exclusive events A1,A2, . . . that’s

events that Ai
⋂

Aj when i 6= j we have that:

P
( ∞⋃

i=1
Ai

)
=
∞∑

i=1
P(Ai )



Basic concepts of probability:

Event independence:
Two events are independent when the occurrence of the first does
not affect the probability of ocurrence of the second.
Two events A and B are independent if:

P(A
⋂

B) = P(A)P(B)

Conditional Events:
The probability of a event A to occur given that the event B
occurred is:

P(A|B) = P(A
⋂

B)
P(B)



Basic concepts of probability:

Bayes theorem:

P(A|B) = P(B|A)P(A)
P(B)

General case:

P(Ai |B) = P(B|Ai )P(Ai )∑n
j=1 P(B|Aj)P(Aj)



Bayes example (from Veritasium):
You are felling sick, so you go to the doctor, there you run a battery
of tests. After getting the results you tested positive for a rare
disease (affects 0.1% of the population), the test will correctly
identify that you have it 99% of the times.
What’s the chances that you actually have the disease? 99%?

https://www.youtube.com/watch?v=R13BD8qKeTg


Bayes example Solution
Let’s denote the event of you have the disease H (stands for
hypothesis, the prior) and the test been positive denoted by E
(stands for evidence), so we have: P(H) = 0.001 and
P(E |H) = 0.99

P(H|E ) = P(E |H)P(H)
P(E ) = P(E |H)P(H)

P(H)P(E |H) + P(HC )P(E |HC ) =

= 0.99 · 0.001
0.001 · 0.99 + 0.999 · 0.01 = 0.09 = 9%

What if you test again and it’s also positive? You can just take the
posterior probability we just calculated and use as a prior:

= 0.99 · 0.09
0.09 · 0.99 + 0.91 · 0.01 = 0.907 ≈ 91%

Awesome video: A visual guide to Bayesian thinking

https://www.youtube.com/watch?v=BrK7X_XlGB8


Figure 2: Credits: sandserifcomics

https://www.instagram.com/sandserifcomics/


Random Variable (RV)
Consider a experiment with a sample space Ω associated with it. A
function that maps each element ω ∈ Ω to a Real number such that
[w ≤ X ] it’s called random variable (RV) (X : Ω→ R)

Example: Imagine a experiment that consist of 3 consecutive
fair coin tosses, so the sample space of this experiment is:
S = {(H,H,H), (H,H,T) , . . . (T,T,T)} . Now we want to
create a random variable X that counts the number of heads in
each outcome, so X((H,H,H)) = 3 and X((H,H,T)) = 2.



Random Variable:

Probability Mass Function (PMF):

fX (x) = P[X = x ] = P[{ω ∈ Ω : X (ω) = x}]

Probability Density Function (PDF)

P[a ≤ X ≤ b] =
∫ b

a
f (x)dx

Cumulative Distribution Function (CDF)

FX (x) = P[X ≤ x ]



Expectation:

Discrete : E[X ] =
∑

xP(X = x)

Continuous: E[X ] =
∫ ∞
−∞

xf (x)dx

Variance:

V[X ] = σ2
X = E[X 2]− E2[X ]

Sample mean:

Xn = 1
n

n∑
i=1

Xi

Sample variance and standard deviation:

s2 = 1
n − 1

n∑
i=1

(Xi − X )2

Standard deviation = s



Discrete distributions

Bernoulli:
Consider a experiment with has two possible outcomes: success
(X=1, with probability p) or failure (X=0), this random variable is
called Bernoulli, the PMF is:

P(X = k) = pk(1− p)1−k

Binomial:
Now consider a Bernoulli experiment conducted n times, let X be
the random variable that represents the number of successes, X is
called Binomial, the PMF is:

P(X = k) =
(

n
k

)
pk(1− p)n−k



Discrete distributions
Geometric:
Again consider a Bernoulli experiment conducted n times, but the
first n-1 are failures and the last nth is a success. Let X be number
of tries , which is called Geometric, the PMF is:

P(X = k) = (1− p)kp

A important property is that Geometric distribution is the only
discrete distribution that is memoryless.

Poisson:
A random variable which value can assume 0,1,2 . . . is called
Poisson with λ > 0 parameter if your PMF is:

P(X = k) = e−λλk

k!



Discrete distributions plots
Geometric:



Discrete distributions plots
Binomial:



Discrete distributions plots
Poisson:



Continuous distributions

Normal (or Gaussian, bell curve):
A continuous real random variable is called Normal with σ2 > 0
(squared scale), µ ∈ R (location) parameters if your PDF is:

f (x) = 1
σ
√
2π

exp
(
−1
2

(x − µ
σ

)2
)

The normal function is a example of Liouville’s theorem, an
probability cannot be analytically calculated, only be numeric
methods.
Fun facts: the half inside the exponential is for the variance to
be 1, and the

√
2π is for the integral in the whole support to

become 1.



Continuous distributions

Exponential
A continuous positive random variable is called Exponential with
λ > 0 (rate or inverse scale) parameter if your PDF is:

f (x) = λe−λx

Important property: Exponential and Geometric (discrete)
distribution are the only distributions that are memoryless.

Memoryless property:

P[X > x + y | X > y ] = P[X > x ]

So no matter how much time has passed it’s like the process is
starting from beginning.



Continuous distributions

Pareto
A continuous x ∈ [xm,∞) random variable is called pareto with
xm > 0 (scale) and α > 0 (shape) parameters if your PDF is:

f (x) = αxα
m

xα+1

Zipf is the discrete distribution of pareto
Pareto is a heavy tailed distribution: It means it goes to zero
slower (than exponential).

Pareto principle (80-20 law):
The pareto principle states that 80% of results is caused by 20% of
the effects, for example wealth distribution, software bugs etc . . .
It’s a particular pareto distributed values when α ≈ 1.161



Continuous distributions plots
Normal:



Continuous distributions plots
Exponential:



Continuous distributions plots
Pareto:



Calculations on the Normal distribution
Given a Normal distributed values, how to calculate the probability
on it?
With normal distribution we usually use a standard normal (where
µ = 0, σ = 1) cumulative table and standardize the values.

How to standardize the values: Given X ∼ N(µ, σ2)

z = x − µ
σ

or z = x − x
s

z is called z score and is standard normal distributed.
Standard cumulative Φ(x):

Φ(x) = P(z ≤ x) also Φ(−x) = 1− Φ(x)
Φ(x) values can we found in a table or using NORMSDIST function
in Excel or in Python using stats.norm.cdf function from SciPy.

https://en.wikipedia.org/wiki/Standard_normal_table#Cumulative


68-95-99.7 rule:
The 68-95-99.7 rule also know as the empirical rule is a shorthand
to remember the percentage of Normal distributed values that lie
within arround the mean with a width of 1,2,3 standard deviations.

P(µ− 1σ ≤ X ≤ µ+ 1σ) ≈ 0.6827

P(µ− 2σ ≤ X ≤ µ+ 2σ) ≈ 0.9545

P(µ− 3σ ≤ X ≤ µ+ 3σ) ≈ 0.9973

We don’t have to memorize this values, we can calculate it:

P(µ− 1σ ≤ X ≤ µ+ 1σ) = P(−1σ ≤ X − µ ≤ 1σ) =

P
(
−1 ≤ X − µ

σ
≤ 1

)
= P(−1 ≤ z ≤ 1) = Φ(1)−Φ(−1) ≈ 0.6827



68-95-99.7 rule: Chart

Figure 3: Credits: Wikipedia: Empirical rule histogram

https://commons.wikimedia.org/wiki/File:Empirical_rule_histogram.svg


Calculations on the Normal distribution: Example from Ross:
X is a normal random variable with parameters: µ = 3 and σ2 = 9,
Calculate: (a) P(2 < X < 5) (b) P(X > 0) (c) P(|X − 3| > 6)



Calculations on the Normal distribution: Example from Ross: part a

P(2 < X < 5) = P
(2− µ

σ
<

X − µ
σ

<
5− µ
σ

)
= P

(−1
3 < Z <

2
3

)
=

Φ
(2
3

)
− Φ

(−1
3

)
= Φ

(2
3

)
−
[
1− Φ

(1
3

)]
≈ 0.3779



Calculations on the Normal distribution: Example from Ross: part b

P(X > 0) = P
(X − µ

σ
>
−µ
σ

)
= P(Z > −1) = 1− Φ(−1) =

= Φ(1) ≈ 0.8413



Calculations on the Normal distribution: Example from Ross: part c

P(|X − 3| > 6) = P(6 < X − 3 < −6) = P(9 < X < −3) =

P(X > 9)+P(X < −3) = P
(X − µ

σ
>

9− µ
σ

)
+P

(X − µ
σ

<
−3− µ
σ

)

= P(Z > 2) + P(Z < −2) = 2[1− Φ(2)] ≈ 0.0456



Assumptions on distribution choice

Figure 4: Credits: Portal data science

https://www.instagram.com/portaldata/


Assumptions on distribution choice



Assumptions on distribution choice
In order to know which distribution of your data values
understanding the nature of the problem is fundamental.
Is your values a result from counting? So is it discrete ? Or
continuous? Which values are possible?

Discrete distributions:
Bernoulli: boolean result, example: coin toss, second turn
(with only 2 candidates) election.
Binomial: Number of “success” results given a permanent
experiment runs. Example: From 20 devices after a long time
what’s the probability of 15 of them has a kind of defect.
Geometric: Number of failures until the first success. Example:
The probability of winning the lottery is 1 in 1 million, What’s
the probability of winning it after 3 tries?
Poisson: Example: Number of cars on the road.



Assumptions on distribution choice

Continuous distributions:
Normal: No restriction on possible values (positive and
negative values are valid). Example: The height of children of
the same sex and age.
chi-squared: Only positive values, unlike normal is not
symmetric.
Exponential: Only positive values, describes the time until
failure.
Pareto: Only positive values and bigger and xm. Example: Size
of gold mines, very few big mines and a lot of small ones.



order statistics and quantiles
Given X1,X2, · · · ,Xn values from the same distribution, let:

X(1) the smallest value from X1,X2, · · · ,Xn (minimum)
X(2) 2th smallest value from X1,X2, · · · ,Xn
X(j) jth smallest value from X1,X2, · · · ,Xn
X(n) the biggest value from X1,X2, · · · ,Xn (maximum)

q-quantiles are values that partition the values into q subsets of
(almost) equal sizes. For instance: q=2 we have the median, 4
the quartiles , 100 percentile and so on . . .
Why use quantiles? Why use median instead of the mean?
Because Order statistics is a robust statistic which means it is
not affected by outliers.



boxplots:

Figure 5: Credits: Wikipedia: Boxplot vs PDF

https://commons.wikimedia.org/wiki/File:Boxplot_vs_PDF.svg


Boxplots example:
Let X_n be a sequence of normal distributed random variable with
µ = 500 and σ = 100 we have n=1000 samples, results:



Boxplots example:

count 1000.000000
mean 501.933206
std 97.921594
min 175.873266
25% 435.240969
50% 502.530061
75% 564.794388
max 885.273149



Convergence
In statistics there some types of convergence, the main ones are:
Let {X1,X2, · · · } be a sequence of identically distributed random
variables.

1 In Probability: Xn
p−→ Y :

(∀ε > 0) lim
n→∞

P(|Xn − Y | > ε) = 0

2 In distribution (weakly, in law): Xn
D−→ Y

lim
n→∞

FXn (x) = FY (y)

3 Almost sure (strongly) : Xn
as−→ Y

P
(

lim
n→∞

Xn = Y
)

= 1



Convergence

Law of large numbers (LLN):
Let {X1,X2, · · · } be a sequence of identically distributed random
variables and E[X ] = µ

Weak (WLLN)

Xn
p−→ µ n→∞

Strong (SLLN)

Xn
as−→ µ n→∞

In words: The sample mean converge to the (theoretical) expected
value as the sample size increases.



Convergence

Central Limit Theorem (CLT)
Let {X1,X2, · · · } be a sequence of identically distributed random
variables and E[X ] = µ and V[X ] = σ2

The CLT states that:

Xn
D−→ N

(
µ,
σ2

n

)
After some transformations we have:

√
n(Xn − µ)

σ
D−→ N (0, 1)



Inference:
Inference is the process to deduce (estimate) the properties of
underlying probability distribution from the data values.

Maximum likelihood estimator (MLE):
One of the most popular estimator method is the maximum
likelihood estimator, it consists of finding the parameters that
maximizes the likelihood function (via derivatives).

Q-Q plot:
Q-Q (quantile-quantile) plot: Is a plot where data quantiles are
ploted in one axis and the theoretical quantiles of the fitted
distribution on the other axis and a linear regression of the points.
This plot can be used to provide a assessment of the “goodness of
fit” and maybe find out the data outliers on the data.



Inference process
Given some data the inference process goes like this:

1 Choose a distribution (based on the nature of the problem).
2 Fit the distribution (estimate the parameters).
3 Create a q-q plot to judge the goodness of fit, if some outliers

are found they can be identified (and maybe left out).
If the line still not good try starting again with a different
distribution.



Inference example:
Using the same data from the boxplot example, the Q-Q plot:

The plot has created using stats.probplot from SciPy.
Using stats.norm.fit we can estimate (fit) the parameters (assuming
normal distribution), we get: loc=501.93 and scale=97.87 we
generated random values using loc=500,scale=100n=1000 (the fit
could get better with a bigger sample)

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.probplot.html


Inference example 2:
With new data (n=1000), the Q-Q plot:

Looking at the line we can clearly see that the line did not fit the
points, the data probably is not normal distributed.



Inference example 2: histogram:

the values is not symmetric, one good guest is that it’s a chi
squared distribution.



Inference example 2: Q-Q plot assuming chi squared:

Using stats.chi2.fit we can estimate (fit) the parameters:
df=5.5,loc=460,scale=74, we generated random values using
df=4,loc=500,scale=100.



Further reading:
To study those topics in depth, here are some awesome references:

Getting started:
Podcast: (pt) Pizza de Dados
Book: The Lady Tasting Tea: (pt) Uma Senhora Toma Chá.
/r/dataisbeautiful
Scipy lectures scientific examples with Python.

Studying material:
(pt) Portal Action
The Probability and Statistics Cookbook
Havard Statistics 110: Probability
Statistics and probability
Random website
Book: (en) First Course in Probability by Sheldon Ross: (pt)
Probabilidade: Um Curso Moderno com Aplicações

https://pizzadedados.com/
https://www.reddit.com/r/dataisbeautiful/
http://scipy-lectures.org/
http://www.portalaction.com.br/ambiente-virtual-de-aprendizado
http://statistics.zone/
https://www.youtube.com/playlist?list=PL2SOU6wwxB0uwwH80KTQ6ht66KWxbzTIo
https://www.khanacademy.org/math/statistics-probability
http://www.randomservices.org/random/

