Introduction to statistics

Learning the basics of probability and statistics

Caio Volpato (caioau)

 ${\sf caioau.keybase.pub} \, \to \, {\sf caioauheyuuiavlc.onion}$

210B C5A4 14FD 9274 6B6A 250E **EFF5 B2E1 80F2 94CE**

All Copylefts are beautiful: licensed under CC BY-SA 4.0

Summary:

- Probability concepts
- Discrete distributions.
- Continuous distributions.
- Calculations on the Normal distribution.
- Convergence
- Inference

Motivation

Figure 1: Dados apontam \dots (data shows \dots)

Sample space Ω

It's the set of all the possible outcomes of a experiment, denoted by S or $\boldsymbol{\Omega}$

Event

It's a subset of the sample space.

Probability (Definition):

Given a experiment with a sample space Ω and a class of events \mathcal{A} , the probability denoted by \mathbb{P} is a function which has \mathcal{A} as domain and associate a numerical value between [0,1] as image.

Probability properties:

- lacksquare $\mathbb{P}(\Omega)=1$ and $\mathbb{P}(\emptyset)=0$
- $0 \leq \mathbb{P}(A) \leq 1$, for every event A
- § For any sequence of mutually exclusive events $A_1, A_2, ...$ that's events that $A_i \cap A_j$ when $i \neq j$ we have that:

$$\mathbb{P}\left(\bigcup_{i=1}^{\infty}A_i\right)=\sum_{i=1}^{\infty}\mathbb{P}(A_i)$$

Event independence:

Two events are independent when the occurrence of the first does not affect the probability of ocurrence of the second.

Two events A and B are independent if:

$$\mathbb{P}(A \cap B) = \mathbb{P}(A)\mathbb{P}(B)$$

Conditional Events:

The probability of a event A to occur given that the event B occurred is:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

Bayes theorem:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A)\mathbb{P}(A)}{\mathbb{P}(B)}$$

General case:

$$\mathbb{P}(A_i|B) = \frac{\mathbb{P}(B|A_i)\mathbb{P}(A_i)}{\sum_{j=1}^n \mathbb{P}(B|A_j)\mathbb{P}(A_j)}$$

Bayes example (from Veritasium):

You are felling sick, so you go to the doctor, there you run a battery of tests. After getting the results you tested positive for a rare disease (affects 0.1% of the population), the test will correctly identify that you have it 99% of the times.

What's the chances that you actually have the disease? 99%?

Bayes example Solution

Let's denote the event of you have the disease H (stands for hypothesis, the prior) and the test been positive denoted by E (stands for evidence), so we have: $\mathbb{P}(H) = 0.001$ and $\mathbb{P}(E|H) = 0.99$

$$\mathbb{P}(H|E) = \frac{\mathbb{P}(E|H)\mathbb{P}(H)}{\mathbb{P}(E)} = \frac{\mathbb{P}(E|H)\mathbb{P}(H)}{\mathbb{P}(H)\mathbb{P}(E|H) + \mathbb{P}(H^C)\mathbb{P}(E|H^C)} = \frac{0.99 \cdot 0.001}{0.001 \cdot 0.99 + 0.999 \cdot 0.01} = 0.09 = 9\%$$

What if you test again and it's also positive? You can just take the posterior probability we just calculated and use as a prior:

$$= \frac{0.99 \cdot 0.09}{0.09 \cdot 0.99 + 0.91 \cdot 0.01} = 0.907 \approx 91\%$$

Awesome video: A visual guide to Bayesian thinking

Figure 2: Credits: sandserifcomics

Random Variable (RV)

Consider a experiment with a sample space Ω associated with it. A function that maps each element $\omega \in \Omega$ to a Real number such that $[w \leq X]$ it's called random variable (RV) $(X : \Omega \to \mathbb{R})$

• Example: Imagine a experiment that consist of 3 consecutive fair coin tosses, so the sample space of this experiment is:

$$S = \{(H,H,H), (H,H,T), \dots (T,T,T)\}$$
. Now we want to create a random variable X that counts the number of heads in each outcome, so $X((H,H,H)) = 3$ and $X((H,H,T)) = 2$.

Random Variable:

Probability Mass Function (PMF):

$$f_X(x) = \mathbb{P}[X = x] = \mathbb{P}[\{\omega \in \Omega : X(\omega) = x\}]$$

Probability Density Function (PDF)

$$\mathbb{P}[a \le X \le b] = \int_a^b f(x) dx$$

Cumulative Distribution Function (CDF)

$$F_X(x) = \mathbb{P}[X \le x]$$

Expectation:

- Discrete : $\mathbb{E}[X] = \sum x \mathbb{P}(X = x)$
- Continuous: $\mathbb{E}[X] = \int_{-\infty}^{\infty} xf(x)dx$

Variance:

$$\mathbb{V}[X] = \sigma_X^2 = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$

Sample mean:

$$\overline{X_n} = \frac{1}{n} \sum_{i=1}^n X_i$$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Discrete distributions

Bernoulli:

Consider a experiment with has two possible outcomes: success (X=1, with probability p) or failure (X=0), this random variable is called Bernoulli, the PMF is:

$$\mathbb{P}(X=k)=p^k(1-p)^{1-k}$$

Binomial:

Now consider a Bernoulli experiment conducted n times, let X be the random variable that represents the number of successes, X is called Binomial, the PMF is:

$$\mathbb{P}(X=k) = \binom{n}{k} p^k (1-p)^{n-k}$$

Discrete distributions

Geometric:

Again consider a Bernoulli experiment conducted n times, but the first n-1 are failures and the last nth is a success. Let X be number of tries, which is called Geometric, the PMF is:

$$\mathbb{P}(X=k)=(1-p)^kp$$

• A important property is that Geometric distribution is the only discrete distribution that is **memoryless**.

Poisson:

A random variable which value can assume 0,1,2 . . . is called Poisson with $\lambda > 0$ parameter if your PMF is:

$$\mathbb{P}(X=k) = \frac{e^{-\lambda}\lambda^k}{k!}$$

Discrete distributions plots

Discrete distributions plots

Discrete distributions plots

Continuous distributions

Normal (or Gaussian, bell curve):

A continuous real random variable is called Normal with $\sigma^2>0$ (squared scale), $\mu\in\mathbb{R}$ (location) parameters if your PDF is:

$$f(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right)$$

- The normal function is a example of Liouville's theorem, an probability cannot be analytically calculated, only be numeric methods.
- Fun facts: the half inside the exponential is for the variance to be 1, and the $\sqrt{2\pi}$ is for the integral in the whole support to become 1.

Continuous distributions

Exponential

A continuous **positive** random variable is called Exponential with $\lambda > 0$ (rate or inverse scale) parameter if your PDF is:

$$f(x) = \lambda e^{-\lambda x}$$

Important property: Exponential and Geometric (discrete) distribution are the only distributions that are **memoryless**.

Memoryless property:

$$\mathbb{P}[X > x + y \mid X > y] = \mathbb{P}[X > x]$$

So no matter how much time has passed it's like the process is starting from beginning.

Continuous distributions

Pareto

A continuous $x \in [x_m, \infty)$ random variable is called pareto with $x_m > 0$ (scale) and $\alpha > 0$ (shape) parameters if your PDF is:

$$f(x) = \frac{\alpha x_m^{\alpha}}{x^{\alpha+1}}$$

Zipf is the discrete distribution of pareto Pareto is a **heavy tailed** distribution: It means it goes to zero slower (than exponential).

Pareto principle (80-20 law):

The pareto principle states that 80% of results is caused by 20% of the effects, for example wealth distribution, software bugs etc . . . It's a particular pareto distributed values when $\alpha \approx 1.161$

Continuous distributions plots

Continuous distributions plots

Continuous distributions plots

Calculations on the Normal distribution

Given a Normal distributed values, how to calculate the probability on it?

With normal distribution we usually use a standard normal (where $\mu=0,\sigma=1$) cumulative table and standardize the values.

• How to standardize the values: Given $X \sim N(\mu, \sigma^2)$

$$z = \frac{x - \mu}{\sigma}$$
 or $z = \frac{x - \overline{x}}{s}$

z is called z score and is standard normal distributed.

• Standard cumulative $\Phi(x)$: $\Phi(x) = \mathbb{P}(z \le x)$ also $\Phi(-x) = 1 - \Phi(x)$

 $\Phi(x)$ values can we found in a table or using NORMSDIST function in Excel or in Python using stats.norm.cdf function from SciPy.

68-95-99.7 rule:

The 68-95-99.7 rule also know as the empirical rule is a shorthand to remember the percentage of Normal distributed values that lie within arround the mean with a width of 1,2,3 standard deviations.

$$\mathbb{P}(\mu - 1\sigma \le X \le \mu + 1\sigma) \approx 0.6827$$

$$\mathbb{P}(\mu - 2\sigma \le X \le \mu + 2\sigma) \approx 0.9545$$

$$\mathbb{P}(\mu - 3\sigma \le X \le \mu + 3\sigma) \approx 0.9973$$

We don't have to memorize this values, we can calculate it:

$$\mathbb{P}(\mu - 1\sigma \le X \le \mu + 1\sigma) = \mathbb{P}(-1\sigma \le X - \mu \le 1\sigma) =$$

$$\mathbb{P}\left(-1 \leq \frac{X - \mu}{\sigma} \leq 1\right) = \mathbb{P}(-1 \leq z \leq 1) = \Phi(1) - \Phi(-1) \approx 0.6827$$

68-95-99.7 rule: Chart

Figure 3: Credits: Wikipedia: Empirical rule histogram

Calculations on the Normal distribution: Example from Ross:

X is a normal random variable with parameters: $\mu = 3$ and $\sigma^2 = 9$, Calculate: (a) $\mathbb{P}(2 < X < 5)$ (b) $\mathbb{P}(X > 0)$ (c) $\mathbb{P}(|X - 3| > 6)$

Calculations on the Normal distribution: Example from Ross: part a

$$\mathbb{P}(2 < X < 5) = \mathbb{P}\left(\frac{2-\mu}{\sigma} < \frac{X-\mu}{\sigma} < \frac{5-\mu}{\sigma}\right) = \mathbb{P}\left(\frac{-1}{3} < Z < \frac{2}{3}\right) =$$

$$\Phi\left(\frac{2}{3}\right) - \Phi\left(\frac{-1}{3}\right) = \Phi\left(\frac{2}{3}\right) - \left[1 - \Phi\left(\frac{1}{3}\right)\right] \approx 0.3779$$

Calculations on the Normal distribution: Example from Ross: part b

$$\mathbb{P}(X > 0) = \mathbb{P}\left(\frac{X - \mu}{\sigma} > \frac{-\mu}{\sigma}\right) = \mathbb{P}(Z > -1) = 1 - \Phi(-1) =$$
$$= \Phi(1) \approx 0.8413$$

Calculations on the Normal distribution: Example from Ross: part c

$$\mathbb{P}(|X-3| > 6) = \mathbb{P}(6 < X - 3 < -6) = \mathbb{P}(9 < X < -3) = 0$$

$$\mathbb{P}(X > 9) + \mathbb{P}(X < -3) = \mathbb{P}\left(\frac{X - \mu}{\sigma} > \frac{9 - \mu}{\sigma}\right) + \mathbb{P}\left(\frac{X - \mu}{\sigma} < \frac{-3 - \mu}{\sigma}\right)$$

$$= \mathbb{P}(Z > 2) + \mathbb{P}(Z < -2) = 2[1 - \Phi(2)] \approx 0.0456$$

Figure 4: Credits: Portal data science

In order to know which distribution of your data values understanding the nature of the problem is fundamental. Is your values a result from counting? So is it discrete? Or continuous? Which values are possible?

Discrete distributions:

- Bernoulli: boolean result, example: coin toss, second turn (with only 2 candidates) election.
- Binomial: Number of "success" results given a permanent experiment runs. Example: From 20 devices after a long time what's the probability of 15 of them has a kind of defect.
- Geometric: Number of failures until the first success. Example: The probability of winning the lottery is 1 in 1 million, What's the probability of winning it after 3 tries?
- Poisson: Example: Number of cars on the road.

Continuous distributions:

- Normal: No restriction on possible values (positive and negative values are valid). Example: The height of children of the same sex and age.
- chi-squared: Only positive values, unlike normal is not symmetric.
- Exponential: Only positive values, describes the time until failure.
- Pareto: Only positive values and bigger and x_m . Example: Size of gold mines, very few big mines and a lot of small ones.

order statistics and quantiles

- Given X_1, X_2, \dots, X_n values from the same distribution, let:
- $X_{(1)}$ the smallest value from X_1, X_2, \dots, X_n (minimum)
- $X_{(2)}$ 2th smallest value from X_1, X_2, \dots, X_n
- $X_{(j)}$ jth smallest value from X_1, X_2, \dots, X_n
- $X_{(n)}$ the **biggest** value from X_1, X_2, \dots, X_n (maximum)

the quartiles, 100 percentile and so on ...

- q-quantiles are values that partition the values into q subsets of (almost) equal sizes. For instance: q=2 we have the median, 4
 - Why use quantiles? Why use median instead of the mean? Because Order statistics is a **robust statistic** which means it is not affected by outliers.

boxplots:

Figure 5: Credits: Wikipedia: Boxplot vs PDF

Boxplots example:

Let X_n be a sequence of normal distributed random variable with $\mu = 500$ and $\sigma = 100$ we have n=1000 samples, results:

Boxplots example:

count	1000.000000
mean	501.933206
std	97.921594
min	175.873266
25%	435.240969
50%	502.530061
75%	564.794388
max	885.273149

Convergence

In statistics there some types of convergence, the main ones are: Let $\{X_1, X_2, \dots\}$ be a sequence of identically distributed random variables.

• In Probability: $X_n \xrightarrow{p} Y$:

$$(\forall \varepsilon > 0)$$
 $\lim_{n \to \infty} \mathbb{P}(|X_n - Y| > \varepsilon) = 0$

② In distribution (weakly, in law): $X_n \stackrel{D}{\longrightarrow} Y$

$$\lim_{n\to\infty} F_{X_n}(x) = F_Y(y)$$

3 Almost sure (strongly) : $X_n \stackrel{as}{\longrightarrow} Y$

$$\mathbb{P}\left(\lim_{n\to\infty}X_n=Y\right)=1$$

Convergence

Law of large numbers (LLN):

Let $\{X_1,X_2,\cdots\}$ be a sequence of identically distributed random variables and $\mathbb{E}[X]=\mu$

Weak (WLLN)

$$\overline{X_n} \stackrel{p}{\longrightarrow} \mu \quad n \to \infty$$

Strong (SLLN)

$$\overline{X_n} \stackrel{as}{\longrightarrow} \mu \quad n \to \infty$$

In words: The sample mean converge to the (theoretical) expected value as the sample size increases.

Convergence

Central Limit Theorem (CLT)

Let $\{X_1, X_2, \cdots\}$ be a sequence of identically distributed random variables and $\mathbb{E}[X] = \mu$ and $\mathbb{V}[X] = \sigma^2$ The CLT states that:

$$\overline{X_n} \stackrel{D}{\longrightarrow} \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

After some transformations we have:

$$\frac{\sqrt{n}(\overline{X_n} - \mu)}{\sigma} \stackrel{D}{\longrightarrow} \mathcal{N}(0, 1)$$

Inference:

Inference is the process to deduce (estimate) the properties of underlying probability distribution from the data values.

Maximum likelihood estimator (MLE):

One of the most popular estimator method is the maximum likelihood estimator, it consists of finding the parameters that maximizes the likelihood function (via derivatives).

Q-Q plot:

Q-Q (quantile-quantile) plot: Is a plot where data quantiles are ploted in one axis and the theoretical quantiles of the fitted distribution on the other axis and a linear regression of the points. This plot can be used to provide a assessment of the "goodness of fit" and maybe find out the data outliers on the data.

Inference process

Given some data the inference process goes like this:

- Choose a distribution (based on the nature of the problem).
- Fit the distribution (estimate the parameters).
- Oreate a q-q plot to judge the goodness of fit, if some outliers are found they can be identified (and maybe left out).

If the line still not good try starting again with a different distribution.

Inference example:

Using the same data from the boxplot example, the Q-Q plot:

The plot has created using stats.probplot from SciPy. Using stats.norm.fit we can estimate (fit) the parameters (assuming normal distribution), we get: loc=501.93 and scale=97.87 we generated random values using loc=500,scale=100n=1000 (the fit could get better with a bigger sample)

Inference example 2:

With new data (n=1000), the Q-Q plot:

Looking at the line we can clearly see that the line did not fit the points, the data probably is not normal distributed.

Inference example 2: histogram:

the values is not symmetric, one good guest is that it's a chi squared distribution.

Inference example 2: Q-Q plot assuming chi squared:

Using stats.chi2.fit we can estimate (fit) the parameters: df=5.5,loc=460,scale=74, we generated random values using df=4,loc=500,scale=100.

Further reading:

To study those topics in depth, here are some awesome references:

Getting started:

- Podcast: (pt) Pizza de Dados
- Book: The Lady Tasting Tea: (pt) Uma Senhora Toma Chá.
- /r/dataisbeautiful
- Scipy lectures scientific examples with Python.

Studying material:

- (pt) Portal Action
- The Probability and Statistics Cookbook
- Havard Statistics 110: Probability
- Statistics and probability
- Random website
- Book: (en) First Course in Probability by Sheldon Ross: (pt)
 Probabilidade: Um Curso Moderno com Aplicações