
An intro to setting up Linux servers
and maintaining it

Caio Volpato (caioau)

Topics
● How [Redacted] platform works
● How to make your own Debian package
● Managing systemd services
● Firewalls
● Security best practices
● Monitoring
● Scheduled Tasks
● Disk failures
● Reliable remote only access principle
● Ansible: infrastructure as code
● Getting started and help on Linux
● Bonus: Raspberry pi specific stuff
● Bonus: “Onionize” your application

How [Redacted] platform works: Overview

How [Redacted] platform works: Details

How to make our own Debian package
Several times we needed to setup a new [Redacted] client machine, the tradicional
procedure was 6 PAGES LONG, which had many problems such as:

● Time consuming (~3 hrs)
● Super susceptible to human errors.
● Every time a new person that will start to run [Redacted] their user needed to

created manually on every client machine and configure their environment. Now
a shared user is used ([Redacted])

○ The user couldn't edit that machine’s devices.txt and trigger executions on new devices.

How to make our own Debian package

How to make our own Debian package
Now with the package in place all the main problems were solved, and deploying a
new [Redacted] client machine should be as easy as:

0. makepkg.sh (fetches the [Redacted] code and generates the package)

1. sudo apt install ./package_1.0-1.deb (installs the package)
2. InstallMissingDeps (Installs the python dependencies and making the package

more generic)

Managing systemd services
All commands below need to be issued via sudo

● systemctl status [--all] [service]
● systemctl start/stop, enable/disable service
● systemctl restart/reload service

● journalctl
● journalctl -u service --since 2019-11-25

Security best practices

OWASP -- Open Web Application Security Project

OWASP is an online community that gives a lot of recommendations on making your
web application secure.

Recommended reading: Threat Modeling Cheat Sheet

https://cheatsheetseries.owasp.org/cheatsheets/Threat_Modeling_Cheat_Sheet.html

Firewalls
● Iptables

○ ufw frontend
● nftables
● OpenBSD’s PF

After issuing your firewall rules, keep your current SSH
connection open and open a new SSH connection to make
sure you won’t get locked out.

Passwords
● [OC] My text (PT-BR): P@ssw0rds: The weakest link of our security
● Relevant XKCD
● A secure password requires to be: truly random, long enough (14+) and most

important easy to remember.
○ Diceware method: english wordlist and PT-br wordlist.

■ Example: panoramic nectar precut smith banana handclap
● Using a well established open source Password manager such as KeePassXC (or

lessPass or bitwarden) is highly encouraged, and enable 2FA or even U2F (aka
yubikey)

● Passwords requirements and expiring policies are full of shit, and do more harm than
good

● New (2017) Nist recommendations should be used.
● When storing the passwords your app should always try to use argon2, and validate

the password strength using zxcvbn and verify if it was compromised using for
instance the haveibeenpwned.com API

https://caioau.keybase.pub/blog/senhas/
https://www.xkcd.com/936/
https://www.eff.org/dice
https://github.com/thoughtworks/dadoware
https://keepassxc.org/
https://lesspass.com/
https://bitwarden.com/
https://en.wikipedia.org/wiki/Password_policy#NIST_guidelines
https://github.com/dropbox/zxcvbn
https://haveibeenpwned.com/API/v2

Security updates
● Have you heard these names?

○ Shellshock
○ Heartbleed
○ dirtyCOW
○ KRACK
○ POODLE and logjam
○ Spectre, meltdown and cpu.fail

● Sign Up for the Ubuntu security notices , Debian Security announces and your
framework security mailing list such: Django announce.

● Unattended upgrades: it’s a native mechanism to automatically install updates.
● Install the latest microcode from your CPU vendor and run spectre-meltdown-checker

https://usn.ubuntu.com/
https://lists.debian.org/debian-security-announce/
https://groups.google.com/d/forum/django-announce
https://wiki.debian.org/UnattendedUpgrades
https://github.com/speed47/spectre-meltdown-checker

DoS attacks

Source: http.cat

https://http.cat/

DoS attacks
● Rate limiting on the firewall
● Apache: mod_qos and mod_evasive, server_status
● Nginx: limit_req

http://mod-qos.sourceforge.net/
https://github.com/jzdziarski/mod_evasive
https://www.nginx.com/blog/mitigating-ddos-attacks-with-nginx-and-nginx-plus/

Firmware security

Flashing coreboot+me_cleaner on
my personal laptop (thinkpad t430)

source

https://www.youtube.com/watch?v=mUTx61t443A

Intel ME: A few examples of attacks
CVE-2017-5689
● An unprivileged network attacker could gain system privileges to provisioned

Intel manageability SKUs: Intel Active Management Technology (AMT) and
Intel Standard Manageability (ISM).

● This vulnerability could be exploited for 7 years, after intel released a patch, but
the patch must carried out by the OEMs.

CVE-2018-3628
● Buffer overflow in HTTP handler in Intel Active Management Technology in

Intel Converged Security Manageability Engine Firmware may allow an
attacker to execute arbitrary code via the same subnet.

https://www.cvedetails.com/cve/CVE-2017-5689/
https://www.cvedetails.com/cve/CVE-2018-3628/

BIOS SW Supply chain:

source

https://www.youtube.com/watch?v=2kNnTsgujIA

Firmware Security: Cool alternatives:
● Me_cleaner: A script that from a BIOS dump it neutralizes the intel ME.
● Coreboot: Fast, secure and flexible open source BIOS available for several

models such as ThinkPads, several chromebooks can install the mrchromebox.
Some models can run without any proprietary blobs with libreboot.

● Heads: Coreboot based BIOS, with several hardening and security features such
as super stronger protection Evil maid attacks.

● safeboot.dev: An alternative for who wants Heads, but your computer model is
not supported by coreboot/heads.

● Cool vendors that are doing a great firmware security job:
○ Purism
○ system76

https://github.com/corna/me_cleaner
https://puri.sm/posts/deep-dive-into-intel-me-disablement/
https://coreboot.org/
https://mrchromebox.tech/
https://libreboot.org/
https://github.com/osresearch/heads
https://safeboot.dev/
https://puri.sm/
https://system76.com/

Debian vs Ubuntu

source

https://www.reddit.com/r/linuxmasterrace/duplicates/ayyuoz/the_biggest_particle_accelerator_in_the_southern/

Ubuntu vs Debian
Ubuntu is based on Debian, but it grew so much apart that there’s a lot of important
differences: A newbie's newbie guide to Debian, by Helen Koike

● Debian is a non profit project (unlike Ubuntu and Fedora)
● All Debian volunteers sign the Debian social contract.
● Ubuntu has a spyware/keylogger installed by default (since 2012).

○ And threatened to sue a website which contains instructions do remove the spyware
● Debian is rock solid Stable.

○ Debian requires reboots every ~4 months while ubuntu ~2 weeks.
○ Ubuntu oftens breaks the system when updating (most release upgrade break the system)

● Most Ubuntu mirrors doesn’t even have HTTPS (CVE-2019-3462)
○ Debian not only have HTTPS but also onion: onion.debian.org

● Most Debian packages are build reproducible (fundamental for trust and security)
● Debian doesn’t require frequent updates (only bugfix and security)
● Ubuntu has a lot of broken packages (such as usbguard, firejail, munin)

https://www.youtube.com/watch?v=EYkuOFZfgeM
https://www.eff.org/pt-br/deeplinks/2012/10/privacy-ubuntu-1210-amazon-ads-and-data-leaks
https://micahflee.com/2013/11/canonical-shouldnt-abuse-trademark-law-to-silence-critics-of-its-privacy-decisions/
https://www.cvedetails.com/cve/CVE-2019-3462/
http://onion.debian.org
https://reproducible-builds.org/

Other “GNU/Linux distros” to look for.

● Tails: The Amnesic Incognito Live System, it’s a security focused distro
installed on CDs or flash drives, not leaving any trace on the computer, and
routing all traffic via Tor.

● Qubes: A reasonably secure operating system. A system that has a bunch of
VMs (using Xen) to compartmentalize all the activities.
○ Security Through Distrusting -- Joanna Rutkowska

● GuixSD: A distro made around the super complete and flexible guix package
manager, inspired by NixOS

○ Solving the deployment crisis with GNU Guix

● OpenBSD: Not a Linux distro!!! It’s a BSD security focused system.
○ In more than 20 years of the project it only had 2 remote holes vulnerabilities in the base

install: Why OpenBSD rocks! Runbsd.info

https://tails.boum.org/
https://www.qubes-os.org/
https://www.youtube.com/watch?v=PSLvfob0A4o
https://guix.gnu.org/
https://nixos.org/
https://www.youtube.com/watch?v=iM3y9CSjMtI
https://www.openbsd.org/
https://why-openbsd.rocks/fact/
https://runbsd.info/

SSH best practices

source

https://twitter.com/scienceshitpost/status/1221465978002759680

SSH best practices
● Good practices:

○ Secure cipherlist
○ rate limit in the firewall or fail2ban
○ pubkey auth only (disable password auth)
○ port knocking
○ 2FA

■ Recent versions of OpenSSH supports using any U2F key as smartcard, both the client
and server most support it :(

○ Access only via Onion, this way only you who knows the onion addr can connect.
● SSH tarpit
● Securing your ssh keys:

○ Generate the key in a air gapped machine and only use it in a yubikey
○ QubesOS SSH split mode

https://pypi.org/project/ssh-audit/
https://wiki.archlinux.org/index.php/Pam_oath
https://marc.info/?l=openssh-unix-dev&m=157259802529972&w=2
https://marc.info/?l=openssh-unix-dev&m=157259802529972&w=2
https://nullprogram.com/blog/2019/03/22/
https://github.com/drduh/YubiKey-Guide
https://deniszanin.com/using-split-ssh-gpg-in-qubes-os/

Monitoring

Monitoring
● How Regular Expressions and a WAF DoS-ed Cloudflare

○ Official report
● Monitoring solutions: Old school Munin, prometheus and zabbix
● Notifications:

○ mailbot
○ healthchecks.io
○ uptimerobot
○ Gotify

https://www.acunetix.com/blog/web-security-zone/regular-expressions-waf-cloudflare/
https://blog.cloudflare.com/details-of-the-cloudflare-outage-on-july-2-2019/
https://healthchecks.io/
https://uptimerobot.com/
https://github.com/gotify/server

Scheduled Tasks

● cron: user tabs, /etc/cron.{weekly,hourly ...}/, /etc/cron.d/
● systemd timers
● Lock files

Disk Failures

Disk failures
● Smartctl: sudo apt install smartmontools

○ sudo smartctl -l long /dev/sda

○ smartctl -H /dev/sda

● fsck every boot: tune2fs -c 1 /dev/sda1; adjust sda1 , use lsblk command
● fsck with badblocks: fsck.ext4 -vcDfty -C 0 /dev/sda1 ;-c that runs badblocks(read)
● io latency in the monitoring

Backup solutions

● Tools: rsync (or unison), syncthing, rclone, borgbackup, duplicity.
● Disk level (softRAID): LVM, BTRFS, ZFS
● Cloud: There’s no cloud just other people's computer: So make sure to securely

encrypt before sending it to the cloud: Use cryptomator, tarsnap, or enable
encryption on backup solution.

https://en.wikipedia.org/wiki/S.M.A.R.T.

Reliable remote only access principle

source

https://twitter.com/jessfraz/status/933155384419897344

Reliable remote only access principle
We need to be able to access all the machines reliably and without the need of

physical intervention. In order to do that we can:

● Cool project: mosh mobile shell: Better “ssh” for bad connections
● Remotely unlock encrypted disks: so we don't need to type the password into

the keyboard (dropbear-initramfs).
● [Redacted]:

○ Dummy screen: we don’t need a physical monitor to control the screen. (xorg.conf)
○ VNC server: So we can access the dummy screen remotely.
○ Autologin so the user password is not prompted
○ Seahorse: Disable password to encrypt the vault
○ Desktop autostart: skype autostart after boot.
○ Firejail: we can run 2 skypes at the same time, with 2 different accounts. (/home is mounted as

different dir)

https://mosh.org/

Ansible: infrastructure as code
Ansible is a powerful server and configuration management tool. It’s similar to Chef,
Puppet or Saltstack.

The biggest advantage is that ansible is agentless (so the managed machines only
need a python interpreter installed, no additional installations), it’s super easy to
make playbooks/roles it’s just a yaml file, and the available modules that do the
heavy work.

It can be used to setup a machine to install an application or manage and do all the
necessary maintenance in all the servers.

The best way to test your playbook is using vagrant: That creates your environment
in a VM, which can be easily re-created or destroyed.

https://www.vagrantup.com/

Ansible: Concepts
● Inventory
● Playbook
● Roles
● Tasks
● Modules

Ansible: Good reference:
I recommend the book: Ansible for DevOps

Using ansible-lint helps a lot, because it gives good practices and tips for your
playbooks.

https://www.ansiblefordevops.com/

DevOps Overview:

Useful commands
● Fish shell: the friendly interactive shell
● Script / scriptreplay: record your terminal session, so you can lookup later.
● Wormhole and onionshare: send files
● hostnamectl: discover everything about the machine: what distro if its a vm ...
● Watch: run a command every x seconds
● netcat (nc): TCP/IP swiss army knife
● Netstat or ss: show several network stuff
● curl cheat.sh/tar ; commands cheat sheets
● Know your shell (bash): HISTTIMEFORMAT and HISTCONTROL
● Arpscan: the arp scanner
● Nmap: Network exploration tool and security / port scanner
● Rssh: restricted secure shell allowing only scp and/or sftp
● tmate : Instant terminal sharing

https://fishshell.com/
http://cheat.sh/
https://tmate.io/

Getting help
source

https://old.reddit.com/r/ProgrammerHumor/comments/6swn8z/developers_are_people_too/

How to get help:
● /r/linux4noobs is great for beginners.
● DigitalOcean has a lot of great tutorials
● A great place deeply understand something is the archlinux wiki

Great communities:

● casahacker HC and LHC HC
● DevOps Campinas slack group
● Unicamp groups:

○ Enigma (cryptography, privacy and security study group)
○ LKCamp (Linux Kernel study group)
○ Archventure Time (Arch Linux group)

https://www.reddit.com/r/linux4noobs/
https://www.digitalocean.com/community/tutorials
https://wiki.archlinux.org/
https://casahacker.org/
https://lhc.net.br/
https://enigma.ic.unicamp.br/
https://lkcamp.gitlab.io/

What I can do for learning:
● Host a Tor relay or bridge
● Use Linux in your computer, start with an easy distro such as Linux Mint, then

when you’re confident use Arch Linux or Gentoo.
○ 10 ways Linux is just better!

● Self Hosting is always fun:
○ Nextcloud instance: so you can host your files like dropbox, calendar, contacts, notes and kanban.
○ Plex server: so you can host your media.
○ Ttrss: Best way to burst out your feed bubble: follow anything RSS.
○ Jitsi web: Host your own video conferences.
○ Wireguard vpn
○ awesome-selfhosted list

https://community.torproject.org/relay/
https://www.youtube.com/watch?v=mAFMJ1LnQu8
https://github.com/awesome-selfhosted/awesome-selfhosted

Other cool topics to learn:
● Linux desktop hardening
● Containers and virtualization.
● Disk encryption: LUKS, Veracrypt (awesome hidden volumes), ecryptfs
● Encryption: SSL/TLS (Let’s encrypt,FS) , security http headers, PGP,

Steganography (Stegosuite)
● Anonymize your users data: differential privacy, homomorphic encryption

https://0xacab.org/caioau/debian-hardening-install

Awesome resources to follow:
● Youtube:

○ Chris Titus Tech
○ LearnLinuxTV
○ Level1Linux
○ Luke Smith
○ Quidsup
○ Wolfgang's Channel
○ LINUXtips

■ FiqueEmCasaConf
● Media.ccc.de: Chaos Computer conference recorded talks.
● Podcasts:

○ Jupiterbroadcasting: podcast network with dozen podcasts.
○ The Syscast podcast

● Julia Evans: awesome zines to learn about a lot tech things.
● Guiafoca.org: (PT-BR) awesome resource to learn about computers and GNU/Linux

https://www.youtube.com/channel/UCg6gPGh8HU2U01vaFCAsvmQ
https://www.youtube.com/channel/UCxQKHvKbmSzGMvUrVtJYnUA
https://www.youtube.com/channel/UCOWcZ6Wicl-1N34H0zZe38w
https://www.youtube.com/channel/UC2eYFnH61tmytImy1mTYvhA
https://www.youtube.com/channel/UC0A3ldncnGQ1M_RU2Wb4L2A
https://www.youtube.com/channel/UCsnGwSIHyoYN0kiINAGUKxg
https://www.youtube.com/user/linuxtipscanal/
https://www.youtube.com/playlist?list=PLf-O3X2-mxDmn0ikyO7OF8sPr2GDQeZXk
https://media.ccc.de/
https://www.jupiterbroadcasting.com/
https://ma.ttias.be/syscast/
https://jvns.ca/
https://guiafoca.org/

Summing up:

Summing up:
Your platform absolutely needs:

1. Always have the latest security updates installed.
2. A backup solution, which is automatic, periodic and monitored (but also verify

from time to time (Two Generals' Problem)).
3. In case of hardware failure, you need to know how to setup your environment.
4. A monitoring solution, so you can get notified of any problem.

Other things that are nice to have:

1. Deploy method, such as a package, or better yet a CD solution too.
2. Automatic configuration tool, such as ansible.

Bonus: Raspberry pi specific stuff
A lot of people use their pies to host some of their stuff, but raspberry pi is not
reliable as ordinary computers, so don’t host anything critical on pies, because:

● SD card corruption (wearing out)
● Power problems: not enough power, power not stable … .

In order to mitigate that we can:

● Disable disk swap and it’s a good idea to use zram instead ;)
● Logs and journals write to RAM, not to the card.
● Run fstrim periodically, to wear level ...
● noatime mount flag, to write less stuff to the card.

Bonus: “Onionize” your application
Unless your application is a bank system, you can consider to allow your users to
access your app via onion, so the users have complete anonymity.

For instance, facebook can be accessed via facebookcorewwwi.onion, surely all the
actions that a user does in the site are logged, like the clearnet version, but having
an onion can help for instance journalists to access it without their ISP or gov
knowing it. It’s accessed by 1 million users monthly as of April/2016 (source).

Tor can also help with censorship: Roger Dingledine - The Tor Censorship Arms
Race, for instance Most of the popular Brazilian ISPs started blocking safe abortion
website

http://facebookcorewwwi.onion
https://pt-br.facebook.com/notes/facebook-over-tor/1-million-people-use-facebook-over-tor/865624066877648/
https://youtu.be/ZB8ODpw_om8
https://youtu.be/ZB8ODpw_om8
https://theintercept.com/2019/12/12/net-claro-e-vivo-bloqueiam-site-aborto-seguro/
https://theintercept.com/2019/12/12/net-claro-e-vivo-bloqueiam-site-aborto-seguro/

